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Increasing energy demands, increasing prices, declin-

ing petroleum reserves, political instability in oil-rich areas 

of the world, all call for greater use of domestically produced 

fuels, and global warming concerns have intensifi ed interest in 

biofuel production as a possible source. Various biofuel goals 

have been off ered, and if achieved, will create a massive demand 

for lignocellulosic feedstock (Council for Agricultural Science 

and Technology, 2007). Recent reports, such as the Billion 

Ton Report (Perlack et al., 2005), conclude that with creation 

and adoption of new technology and production practices, 

U.S. agriculture and forest lands have the capacity to sustain-

ably produce the immense amounts of lignocellulosic material 

needed to meet the 30 × 30 goal (Foust et al., 2007). One of 

the newest and least evaluated new production practices associ-

ated with biofuel production is widespread, intensive, recurring 

harvest of corn stover and other crop residues (i.e., above-

ground, nongrain crop biomass).

Cropping system eff ects on soil properties are needed to 

provide information necessary to evaluate sustainability of pro-

duction practices and their eff ect on environment quality. Th e 

pressure to identify appropriate parameters to evaluate the sus-

tainability of soil management practices is becoming critical given 

the desire to increase our energy security and reduce greenhouse 

gas production through increasing use of renewable fuels. Corn 

stover is presented as a major feedstock available for biofuel pro-

duction that could supply as much as 25% of the estimated feed-

stock needed in 2030 to meet the goals of the 30 × 30 plan (Foust 

et al., 2007), and is considered essentially a low-cost waste material 

in their report. Th e Billion Ton report assumes the major use of 

corn stover (and other crop residues) in current crop management 

systems is to manage erosion and any residue above that needed 

for erosion control is sustainably available for removal and use in 

biofuel production. Th e need to replenish SOC is acknowledged in 

the Billion Ton report, but not incorporated into the estimates of 

sustainably harvestable crop residue. Th is defi nition of sustainabil-

ity (i.e., retaining suffi  cient stover in the fi eld to control erosion) 

has been questioned (Wilhelm et al., 2004; Lal, 2004; Johnson et 

al., 2007). Authors of the latter reports have asserted that main-

taining SOC or soil quality may require retention of more stover 

than the amount needed to control erosion. Shukla et al. (2006) 

recently stated that SOC is the best single measure of soil quality. 

Johnson et al. (2006) reported that the amount of crop residue 

needed to maintain SOC can range from 5.25 to 12.50 Mg ha–1 

depending on cropping system and tillage practices. Wilhelm et al. 

(2007) showed that these values exceed the crop residue required 

to control erosion by as much as 10× in typical Corn Belt soils.

Opportunities to make measurements of the amount of crop 

residue needed to maintain SOC in the Corn Belt are somewhat 

limited since few long-term studies exist (Johnson et al., 2006). 

Given the lack of directly applicable studies or data on crop residue 

return on SOC, our specifi c objective was to evaluate the eff ects of 

crop rotation and N fertilizer management (practices that aff ect 

crop residue production) on SOC levels in an irrigated, high-yield 

long-term study in the western Corn Belt.
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MATERIALS AND METHODS
An irrigated monoculture corn, monoculture soybean, 

and soybean–corn rotation study was initiated in 1991 on 

a uniform site in the Platte Valley near Shelton, NE, on a 

Hord silt loam (fi ne-silty, mixed, superactive, mesic, Cumulic 

Haplustoll). Before initiation of the study, the site had been in 

a monoculture corn production system for more than 10 yr. At 

the beginning of the study, corn stalks from the previous grow-

ing season were shredded and the entire area was disked twice 

before planting. Similarly, each year following, corn stalks in 

both continuous corn and soybean–corn cropping systems were 

shredded and the entire area, including that which had been in 

soybean, was disked twice before planting.

A split-split-split plot treatment design within a randomized 

complete block experiment with four replications was used. 

Cropping systems were assigned as the main plots, corn hybrids 

as the subplots, and N fertilizer regimes as the sub-subplots. 

All phases of the monoculture corn and soybean–corn systems 

appeared each year starting with the 1991 growing season. Four 

Pioneer brand corn hybrids (3162, 3379, 3394, and 3417) dif-

fering in yield potential and maturity were selected and used in 

both the monoculture and rotation systems from 1991 through 

2000. In subsequent years, new corn hybrids with similar 

growth characteristics and maturity groups were selected to 

replace the four original hybrids. For 2001 and 2002 they were 

Pioneer brand hybrids 32R42, 33B50, 33G26, and 33P66 and 

for 2003 and 2004 they were Pioneer brand hybrids 31N27, 

33B50, 33V15, and 33P66. All corn hybrids were planted 

between late April and mid-May in 8-row (91-cm row spac-

ing) by 15.2-m-long plots at approximately 74,000 seeds ha–1. 

Soybean in the continuous soybean and soybean–corn cropping 

systems were planted in early May to mid-May. Several diff erent 

soybean varieties were used for the duration of the study, but 

all were from a similar maturity group. Except for N fertilizer 

application rates (described below), both corn and soybean were 

produced using production practices typical to the area.

Nitrogen fertilizer as NH4NO3 was broadcast and immedi-

ately incorporated with 6- to 7-mm sprinkler irrigation in early 

June when corn was at approximately V2 or V3 growth stages 

(Ritchie et al., 1986). Six fertilizer N regimes including fi ve 

fi xed N fertilizer rates (0, 50, 100, 150, and 200 kg N ha–1) and 

one as needed rate (Varvel et al., 1997) were used on both crops. 

Only data from the fi xed N rate treatments were used for this anal-

ysis. Irrigation was provided with a linear-drive sprinkler system.

Aboveground dry matter samples from an area 0.91 m 

wide by 3.04 m long from all corn plots were collected every 

year soon aft er physiological maturity, in September or early 

October. Ears were removed, dried, and weighed. Stalks were 

cut at ground level, chopped, weighed, and a subsample was 

taken for gravimetric moisture determinations for calculation 

of stover dry matter production. Grain yields were determined 

from the dry mass of grain shelled from ears collected in the 

3.04-m length of row. Aft er shelling, cob weights were added to 

the calculated stover weight to obtain total nongrain dry mat-

ter (stover) production.

Aboveground dry matter samples were also collected from 

soybean plots in both continuous soybean and soybean–corn 

cropping systems from 1991 through 1999. Not all plots were 

sampled in all years. Soybeans were cut at ground level using a 

Suzue binder from an area 0.56 m wide by 3.04 m long, soon 

aft er physiological maturity. Th e entire sample was weighed, 

dried, and weighed again for gravimetric moisture determi-

nations for calculation of total dry matter production. Th e 

entire sample was then threshed with a stationary thresher to 

determine seed yield. Soybean stover yield was determined by 

subtracting seed yield from total dry matter yield.

Before initiation of the study, three composite soil samples 

were taken from the entire study area (east to west) approxi-

mately every 300 ft . Several cores (5 to 10) at each of the three 

locations were taken to a depth of 90 cm in 0- to 15-, 15- to 30-, 

and 30- to 90-cm depth increments and composited by depth. 

Several analyses were run to characterize the site, but soil 

organic matter was determined only for the 0- to 15-cm depth. 

Soil organic matter content for these samples was determined 

by the Walkley Black method as described by Combs and 

Nathan (1998) and then converted to SOC as also described 

by Combs and Nathan (1998). Th ese results were then used 

to compare to results from the 0- to 15-cm depth sampled in 

2005.

Soil samples were taken in the spring of 2005 from all plots 

in the continuous corn and soybean–corn cropping systems 

and from 24 plots of the continuous soybean cropping system, 

5 in each block that had received the fi xed N fertilizer treat-

ments as described above. Fift een cores (1.8 cm diameter) were 

taken to a depth of 30 cm in 0- to 7.5-, 7.5- to 15-, and 15- to 30-cm 

depth increments from each plot and composited by depth.

All samples from 2005 were air-dried, ground to pass a 

2-mm screen, and then analyzed for total C using an automatic 

C analyzer, a Carlo Erba Model 1500 CNS Analyzer (Carlo 

Erba Strumentazione, Milan, Italy) interfaced with a contin-

uous-fl ow mass spectrometer, a Tracer Mass Stable Isotope 

Spectrometer (Europa Scientifi c Limited, Crewe, England; 

Schepers et al., 1989). Total C equates to SOC as all soils were 

at a pH of 6.5 or lower. Soil bulk density was determined by 

using the volume and dry weights from the 15 sample cores 

from each subplot.

Data from the study were analyzed both within and across 

cropping systems using regression analyses. All statistical 

analyses were performed using PC Version 9.1 of the Statistical 

Analyses System for Windows (SAS Institute, 2003).

RESULTS AND DISCUSSION
Initial analyses of both the SOC and bulk density results 

were done within continuous corn and soybean–corn crop-

ping systems using the appropriate model for the split-split plot 

analyses. Th is approach was taken to determine if diff erences in 

SOC or bulk density were obtained between hybrids (varieties) 

within these two systems separately. No signifi cant diff erences 

in either SOC or bulk density were obtained between hybrids, 

hybrid × rotation, hybrid × N rate, or hybrid × rotation × N 

rate (analyses not shown). No diff erences in these measured soil 

variables were expected since grain and dry matter yields for all 

hybrids responded similarly to N fertilizer applications (Varvel 

and Wilhelm, 2003). Since there were no signifi cant diff er-

ences due to hybrid or its interaction with the other variables, 

we combined the results at similar N rates within each hybrid 

in both these systems. Th is approach allowed us to use a much 

simpler model where we could directly compare SOC and bulk 
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density results between all three rotations 

and N rates. Th e results of this approach 

and these analyses are shown in Table 1. 

Th ere were signifi cant diff erences in SOC 

concentrations due to the main eff ects 

of rotation, N rate, and the rotation × N 

rate interaction only in the 0- to 7.5-cm 

depth (Table 1). Th e signifi cant rotation 

× N rate interaction appeared to be due 

to increased SOC concentrations in both 

the continuous corn and soybean–corn 

systems with increasing N rate, but not in 

the continuous soybean system (Table 1). 

Th ese results are similar to those obtained 

by many others throughout the United 

States and world as noted in a global 

analysis by West and Post (2002).

Soil bulk density results for samples 

taken in 2005 from the long-term irri-

gated cropping system study at Shelton, 

NE, are also shown in Table 1. Th ere were 

signifi cant diff erences in bulk density 

values due to the main eff ects of rotation 

at all three depths (Table 1). Th e N rate 

main eff ect and rotation × N rate interac-

tion did not aff ect bulk density values at 

any of the depths (Table 1). Bulk density 

values were signifi cantly less in the con-

tinuous soybean vs. continuous corn and 

soybean–corn cropping systems at the 

0- to 7.5-cm depth (1.18 vs. 1.26 and 1.20 

g cm–3) and 7.5- to 15-cm depth (1.36 vs. 

1.45 and 1.40 g cm–3), respectively (Table 

1). Karlen et al. (2006) also reported 

greater bulk density values in continuous 

corn than from soybean–corn systems in 

a soil quality study comparing crop rota-

tion eff ects at three northern Corn Belt 

locations.

To better understand the eff ects of 

these cropping systems and N fertilizer 

treatments on SOC, total SOC values 

were calculated (using bulk density val-

ues) for each of the sampled depths (0 to 

7.5, 7.5 to 15, and 15 to 30 cm) and then 

summed to examine the eff ects in the 0- 

to 15- and 15- to 30-cm depths (Table 2). 

Th ere were signifi cant diff erences in SOC 

values due to the main eff ects of rotation 

at all depths, N rate at the 0- to 7.5- and 

0- to 15-cm depths, and the rotation 

× N rate interaction only in the 0- to 

7.5-cm depth (Table 2). Th e signifi cant 

rotation × N rate interaction in the 0- to 

7.5-cm depth was obtained because SOC 

values in both the continuous corn and 

soybean–corn systems increased linearly 

with increasing N fertilizer rate, while 

SOC values in the continuous soybean 

Table 1. Total organic soil C concentrations and bulk density (ρb) values as affected by rota-
tion and N rate at the 0- to 7.5-, 7.5- to 15-, and 15- to 30-cm depths in 2005 at Shelton, NE.

Rotation† N rate
C ρb

0–7.5 cm 7.5–15 cm 15–30 cm 0–7.5 cm 7.5–15 cm 15–30 cm
kg ha–1 g kg–1 g cm–3

CC 0 12.6 9.7 8.4 1.27 1.47 1.48
50 13.5 9.8 8.4 1.25 1.44 1.47

100 14.1 9.7 8.2 1.27 1.48 1.50
150 14.2 10.0 8.3 1.24 1.42 1.45
200 14.9 10.4 8.6 1.25 1.46 1.49

CSB 0 12.0 9.9 8.6 1.18 1.38 1.43
50 12.8 10.7 9.4 1.14 1.33 1.41

100 11.9 9.7 8.4 1.23 1.40 1.45
150 11.8 9.9 8.4 1.17 1.34 1.43
200 12.2 10.2 8.4 1.19 1.38 1.46

C/SB 0 12.6 9.8 8.2 1.21 1.40 1.43
50 12.9 10.1 8.3 1.20 1.40 1.42

100 12.7 10.0 8.2 1.18 1.40 1.43
150 12.9 10.1 8.3 1.21 1.41 1.42
200 13.0 10.1 8.4 1.24 1.43 1.45

CV, % 4.5 7.4 7.5 4.3 3.7 3.4
Source of variation df Mean squares
   Replication 3 6.68*** 11.49*** 5.95*** 0.017** 0.022*** 0.128***
   Rotation 2 15.32*** 0.12 0.82 0.029*** 0.041*** 0.014**
   CC&CSB vs. C/SB‡ 1 0.44 0.00 0.78 0.002 0.000 0.008
   CSB vs. CC&C/SB‡ 1 19.59*** 0.17 1.55* 0.034** 0.059*** 0.006
   N rate 4 1.48** 0.52 0.31 0.002 0.004 0.002
   Linear‡ 1 3.87** 0.50 0.06 0.001 0.001 0.002
   Quadratic‡ 1 0.07 0.04 0.02 0.001 0.002 0.001
   Rotation × N rate 8 1.10** 0.26 0.27 0.003 0.001 0.001
   Error 42 0.34 0.55 0.40 0.003 0.003 0.002
* Signifi cant at the 0.05 probability level.
** Signifi cant at the 0.01 probability level.
*** Signifi cant at the 0.001 probability level.
† CC = continuous corn, CSB = continuous soybean, C/SB = corn–soybean.
‡ Contrasts.

Table 2. Total SOC as affected by rotation and N rate at the 0- to 7.5-, 7.5- to 15-, 15- 
to 30-, 0- to 15-, and 0- to 30-cm depths in 2005 at Shelton, NE.

Rotation† N rate
Total SOC

0–7.5 cm 7.5–15 cm 15–30 cm 0–15 cm 0–30 cm
kg ha–1 Mg ha–1

CC 0 12.12 10.81 18.73 22.93 41.66
50 12.86 10.62 18.68 23.48 42.16

100 13.48 10.86 18.62 24.35 42.97
150 13.34 10.81 18.07 24.15 42.22
200 14.13 11.50 19.20 25.63 44.83

CSB 0 10.69 10.29 18.77 20.98 39.75
50 11.10 10.76 20.25 21.86 42.11

100 11.14 10.31 18.56 21.45 40.01
150 10.43 10.02 18.34 20.46 38.79
200 10.93 10.64 18.66 21.58 40.24

C/SB 0 11.48 10.36 17.70 21.85 39.55
50 11.73 10.72 17.82 22.45 40.26

100 11.37 10.54 17.81 21.91 39.72
150 11.84 10.70 17.82 22.54 40.36
200 12.30 10.90 18.51 23.20 41.72

CV, % 5.0 6.0 6.3 4.5 5.0
Source of variation df Mean squares
   Replication 3 3.92*** 8.94*** 59.05*** 18.02*** 129.70***
   Rotation 2 27.64*** 1.32* 5.20* 41.00*** 42.31***
   CC&CSB vs. C/SB‡ 1 1.05 0.00 9.75* 1.17 17.70*
   CSB vs. CC&C/SB‡ 1 34.42** 1.90* 5.12 52.48*** 24.81*
   N rate 4 1.61** 0.56 1.43 3.80* 7.76
   Linear‡ 1 4.92*** 0.89 0.00 9.99** 9.60
   Quadratic‡ 1 0.00 0.35 0.46 0.37 1.66
   Rotation × N rate 8 0.76* 0.20 0.99 1.39 3.62
   Error 42 0.34 0.42 1.36 1.04 4.19
* Signifi cant at the 0.05 probability level.
** Signifi cant at the 0.01 probability level.
*** Signifi cant at the 0.001 probability level.
† CC = continuous corn, CSB = continuous soybean, C/SB = corn–soybean.
‡ Contrasts.
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system were similar at all N fertilizer rates. At all the other 

depths, the signifi cant rotation eff ect occurred because SOC 

values were increased in the continuous corn and soybean–corn 

systems (Table 2).

Th ese results provide valuable information that can be used 

to determine the impact of diff erent residue production levels 

on SOC values in irrigated high-yield management systems 

similar to this study (Varvel and Wilhelm, 2003). Changes in 

SOC levels measured in cropping systems such as these have 

increased importance with the advancement of proposals and 

interest in using crop residues for cellulosic ethanol produc-

tion (Perlack et al., 2005). Perlack et al, (2005) indicated that 

a signifi cant amount of crop residue is sustainably available for 

use as biofuel feedstock, but few research data are available to 

determine the impact of proposed residue removal levels on 

soils and SOC levels (Wilhelm et al., 2004).

Our results provide data from an irrigated corn production 

system located in a geographic area where Graham et al. (2007) 

indicated excess residue would be available for use in cellulosic 

ethanol production. Total SOC results (0- to 15-cm depth) for 

samples taken in 2005 from our study are compared in Fig. 1 to 

those obtained from three composite samples from the entire 

experimental area in 1991 before initiation of the experiment. 

Th is value was calculated by using the average soil organic 

matter value (1.7%) and the average bulk density value for con-

tinuous corn from the 2005 sampling. Th is value was deemed 

appropriate because before initiation of the study in 1991, the 

entire fi eld had been in a continuous corn cropping system for 

over 20 yr with a similar double disk tillage system. Over the 

duration of our study (1991 to 2005), SOC levels in the 0- to 

15-cm depth appear to have remained the same or increased, 

depending on the management system (Fig. 1). Th ese results 

were somewhat unexpected, especially in the continuous soy-

bean cropping system. Earlier reports from other locations have 

shown decreases in SOC levels in continuous soybean cropping 

systems (Karlen et al., 2006; Varvel, 1994; 2006).

Why have SOC levels either remained at prestudy levels 

or increased aft er 14 yr at this location? Since total dry mat-

ter samples were collected over the years from both corn and 

soybean in all cropping systems, we determined the amount 

of aboveground dry matter returned to the soil in each system 

(Fig. 2). As would be expected, the amount of residue produced 

(and returned since no stover was removed in this study) was 

greatest for continuous corn > soybean–corn > continuous 

soybean cropping systems (Fig. 2). All three cropping systems 

produced residue amounts equal to or greater than the 6 Mg 

ha–1 yr–1 of cornstalks cited by Larson et al. (1972) as that 

amount required to prevent loss of organic matter on a soil in 

Iowa containing about 1.8% C. More recently, Johnson et al. 

(2006), using data from the literature, also estimated that the 

minimum amount of aboveground source C inputs to maintain 

SOC in a moldboard plow tilled system averaged 2.5 ± 1.0 Mg 

C ha–1 yr–1, which equates to approximately 6 Mg ha–1 yr–1 of 

aboveground residue with an average C content of 42 to 45%.

Our results provide additional data that can be used to evalu-

ate the eff ects of aboveground residue on SOC levels over an 

extended period of time in a tilled study. It is evident that greater 

amounts of residue are produced under irrigation than rainfed 

conditions in this semiarid environment and at these levels of 

production, SOC levels have been maintained or increased in 

certain cropping systems (Fig. 1). It is not clear as to whether 

increases in SOC such as those obtained in the continuous corn 

system also equate to signifi cant increases in soil quality and 

production or whether maintenance of prestudy SOC levels 

such as what has apparently occurred in the soybean–corn and 

continuous soybean systems is suffi  cient for optimum soil quality 

or productivity. Th is question can only be answered by examin-

ing data from long-term studies such as this one, but even then, 

the answer may be hard to determine due to the confounding 

eff ect of improvement in other aspects of the system (improved 

hybrids, irrigation management, pest control options, etc.) 

throughout the duration of the experiment.

Lastly, given the great zeal exhibited in the literature about 

production of ethanol from crop residues, with the presump-

tion that vast amounts of crop biomass can be removed 

from the land SUSTAINABLY, it is most critical to state 

that we observed no change or slightly increased SOC lev-

els in our study when ALL crop residues were returned to 

the land. Th e simple equality stated by Follett (2001) that 

ΔSOC = Cinput – Coutput suggests that if inappropriately great 

amounts of stover are removed, SOC levels will decrease and 

Fig. 1. Initial total soil organic carbon (SOC) level (1991) and 
total SOC levels in the surface 15-cm depth at Shelton, NE, as 
affected by cropping system and N fertilizer level in 2005. CC 
= continuous corn, CSB = continuous soybean, and 2-yr C/SB 
= corn–soybean.

Fig. 2. Average residue (stover) production levels as affected 
by cropping system and N fertilizer level at Shelton, NE, over 
the duration of the study (1991–2004). CC = continuous corn, 
CSB = continuous soybean, and 2-yr C/SB = corn–soybean.
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in turn so will soil quality (Shukla et al., 2006). However, we 

have observed increased stover yields due to N fertilization over 

the course of this study (Fig. 2), especially in the continuous corn 

system. With proper management and appropriate guidelines, it 

is reasonable to suggest that SOC level can be maintained under 

these high-yield conditions with modest removal of stover from 

the land. Key to development of proper management practices and 

appropriate guidelines are more fi eld studies and in-depth analyses 

of data as suggested by the Council for Agricultural Science and 

Technology (2007), Wilhelm (2008), and Johnson (2007).
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